ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Μερικές Διαφορικές Εξισώσεις
Εξίσωση Laplace ($\nabla^2 u=0$)
Καρτεσιανές συντεταγμένες
Clear["Global`*"]
PDE = D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] == 0;
PDE
u[x, y] = X[x]*Y[y]
PDE = D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] == 0
boundX1 = u[0, y] == 0
boundX2 = u[L, y] == 0
boundY1 = u[x, 0] == 0
boundY2 = u[x, L] == V0
PDE[[1]]/(X[x] Y[y]) // Apart
ODEx = X''[x]/X[x] == λ
ODEy = Y''[y]/Y[y] == -λ
λ = -k^2
ODEx
ODEy
ODEx = X''[x] + k^2 X[x] == 0
ODEy = Y''[y] - k^2 Y[y] == 0
DSolve[{ODEx, X[0] == 0, X[L] == 0}, X[x], x]
k = (n Pi)/L
DSolve[{ODEx, X[0] == 0, X[L] == 0}, X[x], x]
DSolve[ODEy, Y[y], y]
c[n_] := Assuming[Element[n, Integers],
Integrate[V0 Sin[(n Pi x)/L], {x, 0, L}]/
Integrate[Sin[(n Pi x)/L]^2 Sinh[n Pi], {x, 0, L}]]
c[n]
un[x_, t_, n_] := c[n] Sinh[(n Pi y)/L] Sin[(n π x)/L]
uApprox[x_, t_, n0_] := Sum[un[x, t, n], {n, 1, n0}]
uApprox[x, t, 4]
L = 2 Pi;
V0 = 3;
uApprox[x, t, 4]
Table[Plot3D[Evaluate[uApprox[x, y, n]], {x, 0, L}, {y, 0, L}], {n, 2, 6}]
Plot3D[Evaluate[uApprox[x, y, 20]], {x, 0, L}, {y, 0, L}, AxesLabel -> {"x","y"}]
Static web notebook
Author kkoud
Created Thu 11 Sep 2025 10:55:26
Κώστας Κούδας | © 2025